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Foreword: The Impact of Soil on Children’s
Health: A Dirty Story

Children love to play in the dirt. When that dirt

is contaminated, children can be exposed to

toxic substances that may make them ill. The

average child puts about 50 mg of soil and

60 mg of dust into his mouth in a typical day.1

Children with pica, however, may ingest much

more dirt. For reasons that are not yet under-

stood, pica appears to be on the increase in the

United States. An analysis by the Agency for

Healthcare Research and Quality2 found that

between 1999 and 2009 the number of hospital-

izations for pica among Americans of all ages

almost doubled from 964 to 1862, respectively.

In 2009, 31 percent of childhood pica cases

were found among autistic children.

Even children who do not have pica can suffer

serious harm from ingesting contaminated dirt. In

2007 and 2008 in Dakar, Senegal, 18 children

died from lead poisoning that occurred because

their parents were engaged in home recycling

of lead-acid batteries.3 They stored the lead-

contaminated soil in their homes and their child-

ren’s normal hand-to-mouth and object-to-mouth

activities exposed them to fatal amounts of lead.

In northern Nigeria in 2010 > 200 children died

from lead poisoning in villages where ore was

mechanically ground as part of informal gold-

mining activities.4,5 The grinding dispersed lead

widely in the villages and contaminated the soil,

children’s toys and eating utensils, resulting in

an epidemic of lead poisoning that affected

thousands of people.

In this issue, Professors Howard Mielke and

John McLachlan from the Department of Pharma-

cology at Tulane University School of Medicine in

New Orleans provide an overview of how

environmental signaling works.6 The three articles

that follow were written by Aubrey Schacter, Sara

Perl Egendorf and Andrew Gailey.7�9 Ms.

Schacter and Mr. Gailey obtained their master’s

degrees in pharmacology at the Tulane University

School of Medicine and are pursuing medical

degrees at Louisiana State University Health Sci-

ence Center and the University of North Carolina

School of Medicine, respectively. Ms. Egendorf

is a Ph.D. student at the Advanced Science

Research Center at the Graduate Center and at

Brooklyn College of the City University of New

York. Their work provides up-to-date information

about the impact of lead and other soil contami-

nants on children’s health.
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TaggedH1Air, water, soil and
environmental signaling TaggedEnd

TaggedPHoward W. Mielke, PhD,* and John A. McLachlan, PhDTaggedEnd

Within a remarkably short timespan the world population dou-
bled and transitioned from an agrarian to an urban-industrial
society. The transition was accompanied by the major expan-
sion of industries that releases enormous amounts of toxicants
into the air, water, and soil. Naturally occurring and synthetic
chemicals compounds utilized the same signaling system as ver-
tebrate internal cell signaling systems. The concept of environ-
mental signals provides insights to address the impact of

biochemically active toxicants on humans and the ecosystems
that they share with other species. Disruption of the broad sig-
naling systems has the potential for global change that tran-
scends the biological systems of all organisms, including
humans.

Curr Probl Pediatr Adolesc Health Care 2020; 50:100739

TaggedH1Introduction TaggedEnd

T
he concept of environmental signaling arose

from the observations that many environmen-

tal chemicals,

including synthetic com-

pounds and naturally

occurring chemicals uti-

lized the same signaling

system as the natural hor-

mone, estrogen. It was fur-

ther observed that the

signaling system was com-

mon to virtually all verte-

brates. More recently,

environmental chemicals

including lead and other

stressors have been shown

to coopt endogenous sig-

naling systems.1

TaggedPThe terms toxins and toxi-

cants are used to distinguish

natural and human sources of toxic substances. Toxins

are natural products such as poisonous mushrooms,

snake venom, exudates from plant leaves and roots,

and soil bacteria that can be deleterious to health. The

term toxicant refers to artificial products introduced by

human activity into air, water, and

soil. Examples of toxicants include

commercial manufactured goods and

industrial waste byproducts such as

the metal lead, and the plethora of

pesticides created to kill insects and

unwanted weeds in industrial-

agriculture systems. Toxicants are

generally dispersed into the air and

water and then globally distributed

in soil and water. Environmental sig-

naling comprehends both toxins and

toxicants. By considering environ-

mental signaling, attempts are made

to find treatments of common health

issues through improving environ-

mental chemistry and preventing

exposure in the first place.TaggedEndTaggedPTaggedEnd

TaggedPThe current problems of pediatric

and adolescent health occur in the context of the cul-

tural and dynamic changes in the air, water, and soils

on our planet. One of the most formidable changes is

the rapid growth of the human population. Within a

remarkably short timespan the world population dou-

bled and transitioned from an agrarian era, when most

of the population lived on the land, into an urban-indus-

trial era. More than half of the global population cur-

rently live in cities.2 The transition was accompanied

by the major expansion of industry and commercial

enterprises that released massive amounts of toxicants

into the air, water, and soil.TaggedEnd

TaggedEndFrom the Environmental Signaling Laboratory, Department of Pharmacol-

ogy, Tulane University School of Medicine, New Orleans, LA 70112,

United States. TaggedEnd

TaggedEnd*Corresponding author.

E-mail: hmielke@tulane.edu

TaggedEnd Financial disclosures: None of the authors have any financial

disclosures.
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“From an environmental stew-
ardship perspective, the evolving
concept of environmental signals
can provide insights with which
to address the impact of hormon-
ally active chemicals on humans
and the ecosystems that they

share with other species. Disrup-
tion of this apparently broad
communication system has the
potential for global change that

transcends the endocrine
system.”1
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TaggedPLead (Pb) is an example of an excessively exploited

naturally occurring toxic element that was converted

into a widespread and debilitating toxicant. Lead is an

excellent model for understanding environmental sig-

naling. In nature Pb is found only in minute amounts

and exposures are usually small. As part of industry

and commerce, Pb was mined, smelted, and distrib-

uted in massive quantities and dispersed into the envi-

ronment. As a toxicant, Pb contaminated the air and,

as a dust, dispersed globally in soil and water. TaggedEnd

TaggedPExposure to Pb has been associated with long-term

health damage for centuries; although neurotoxic to

both adults and children, the developing nervous sys-

tem is known to be especially sensitive to persistent

damage from short Pb exposures. Furthermore, Pb

mimics calcium (Ca) and is readily absorbed in its

place. Calcium is required for signaling across neuron

synapses. If Pb is in the synapse instead of Ca, then

nerve transmission signals are blocked, and the neurons

become weakened and die. In this way environmental

signals from exposure to Pb have dire consequences to

individuals and society at large.3�5
TaggedEnd

TaggedPAnother example of environmental signals is repre-

sented by a class of chemicals that mimic components

of the endocrine system called endocrine disrupting

chemicals (EDCs). These can be synthetic organic pollu-

tants such as the pesticide dichlorodiphenyl-

trichloroethane (DDT), industrial byproducts such as

polychlorinated biphenyls (PCBs), or plastic constituents

such as bisphenol A (BPA) that all remarkably mimic

the action of the female sex hormone estrogen. Humans

and virtually all other vertebrate forms of life respond to

these chemicals as if they were being treated with a hor-

mone that alters sex and sexual development.1 The

responses by vertebrates potentially disrupt natural pro-

cesses and ecosystem functioning.TaggedEnd

TaggedPThere are numerous examples of toxicants that were

emitted in large amounts into the air, water, and soil.

Many toxicants have been emitted in the environment

only to later find that the toxicant causes persistent

health issues in human and biological systems.6�8 In

many cases, early warnings went unheeded, research

was manipulated, powerful conflicts of interests pre-

vented action, and precautions were not exercised for

stable toxicants; in the case of certain stable com-

pounds, the hazard arises from bioaccumulation of toxi-

cants in the food chain with devasting consequences for

humans and ecosystems alike.9TaggedEnd

TaggedPThe concept of environmental signals provides

insights to address the impact of biochemically active

toxicants on humans and the ecosystems that they share

with other species. Disruption of the apparently broad

communication systems has the potential for global

change that transcends the biological systems of all

organisms, including humans.1TaggedEnd
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Mechanisms of children’s soil
exposure

Aubrey E. Schachter, MS,a Andrew Gailey, MS,b Sara Perl Egendorf, MS,c and
Howard W. Mielke, PhDd,*

Pollution is a concerning and highly studied area, especially in
the arena of children’s health. The focus of this concern, how-
ever, is typically limited to air and water pollution, leaving an
important source under-studied and out of the concern of the
general public. Soil pollution provides a unique threat to child-
ren’s health, due to their increased exposure and susceptibility
to its contaminants. The microbiome of a child is developed
prior to birth and continues to evolve over their lifetime with
each encounter to the outside world. The environment a child

inhabits directly affects their microbiome and their overall
health, and through interactions with contaminated soil, a child
can accumulate adverse health outcomes. The aim of this article
is to summarize the methods by which soil becomes contami-
nated and how children become exposed to the resulting toxi-
cants.

Curr Probl Pediatr Adolesc Health Care 2020; 50:100742

Introduction

T
he influence of soil toxicants on children is not

widely recognized or studied. Current efforts

tend to focus on water and air pollution, with

an emphasis on providing clean drinking water and

eliminating harmful air emissions. Compared to adults

children have a characteristic set of behavioral pat-

terns and physiologic requirements that makes them

uniquely susceptible to soil pollution. These risk fac-

tors increase the likelihood of encountering soil con-

taminants and their associated negative sequelae. This

work discusses the contents of the soil including the

microbiome, mechanisms of soil contamination, and

mechanisms of soil exposure for children.

Microbiome
Microorganisms exert funda-

mental influences on all the

Earth’s plants and animals.1 The study of human

biology typically focuses on genes unique to human

cells. However, human cells account for only about

10% of the DNA associated with human biology.

Although humans inherit about 20,000 - 25,000

genes from their parents, microbiota living in the

intestines alone contain about 3.3 million genes.2

When studying human biology, it may be more

appropriate to directly address the microbiome,

which is a collective system of human cells and their

associated microbiota. These entities function

together, and each body site can be considered as a

unique part of systems biology because different sites

have distinctive microbiota.2 Children interface fre-

quently with the environment

and these interactions influ-

ence and shape their micro-

biome. Under certain

conditions, microorganisms

can cause illness, but the new

understanding is that most are harmless.3 In fact

microbial species help digestion, appetite manage-

ment, and immune system regulation.2

Although soil microbiota and pollutants differ

greatly worldwide, their direct influences on child-

ren’s health are universal.3 Exposure to the microbial

world begins in utero.4 Microbiome exposure

increases as the fetus passes through the vaginal canal

at birth. From birth onward, the microbiome is con-

stantly shaped and changed by a child’s exposures,

with sources including inhalation, hand-to-mouth

behavior, and dermal interactions.5 Adults do mouth
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some objects and ingest vegetables grown in soil.

However, adults are less likely to directly encounter

soil, and have a limited risk of ingesting microbes and

confronting the toxins and toxicants currently found

in soil. Furthermore, adults are more capable of elimi-

nating toxicants and pathogens because of their more

mature immune and body systems.

In 1993 a National Academy of Sciences committee

identified four fundamental attributes that contribute

to children’s increased susceptibility to toxic chemi-

cals when compared to adults.6 First, children have

greater intake kilogram-for-kilogram of food, water,

and air as well as increased exploratory behaviors that

bring them into direct contact with interior dust and

soil. Children also have immature metabolic pathways

and are less able to excrete or detoxify toxic com-

pounds. Children undergo rapid growth and develop-

ment, and these cellular processes are affected by

exposures to toxic compounds. Lastly, children have

more future years of life com-

pared to adults, which can

result in a more substantial

impact when accounting for

overall time spent affected by

the exposure.6 Soil is a medium

that particularly affects child-

ren’s health. Although many

interactions and exposures to

soil can be beneficial, children

are more vulnerable when

encountering toxicants and

pathogens.

Contamination
Soil pollution or contamination refers to the pres-

ence of a chemical or substance out of place and/or

present at higher than normal concentrations that

adversely affect a non-targeted organism.7 Knox et al.

refer to soil contamination as “soil whose chemical

state deviates from the normal composition but does

not have a detrimental effect on organisms”.8 Kabata-

Pendias makes the delineation between contamination

and pollution. Pollution occurs when an element or a

substance is present in greater than natural (back-

ground) concentrations as a result of human activity

and has a net detrimental effect on the environment

and its components.9 Thus, from a plant, animal, and

human health perspective, soils are not considered

polluted unless a threshold concentration exists that

begins to affect biological processes.9 Determining a

“threshold of exposure” of a toxicant or toxin is a sci-

entific conundrum because it requires more knowl-

edge about metabolism and processes than is

ordinarily available. For exam-

ple, consider the evolving

threshold of lead exposure mea-

sured in blood samples recog-

nized as safe for children. In

the 1960s, 60 mg/dL was con-

sidered safe. By 2012 no known

threshold of lead exposure was

recognized as safe for

children.10

These broad definitions

reflect the variety of contami-

nants present in soil and are indicative of the extensive

effects that human-made materials exert on soil qual-

ity. A sample of common soil contaminants with neg-

ative effects on health are shown in Table 1.

The sampled list in Table 1 illustrates the pervasive-

ness of toxicants that end up in soil, and sheds light on

the extensive range of commercial activities that

affects soil quality. The sources of soil contamination

are varied and modulate the resulting health effects.

The amount, duration, and concentration of toxicants,

along with many other host factors, influence how an

exposed child will respond, which renders outcome

prediction an extremely difficult task.

Soils can become contaminated in many ways,

either from non-site or site sources.11 Non-site sources

of soil contamination include volcanic eruption or

industrial emissions of aerosols that enter long-dis-

tance atmospheric transport and deposition. Other

non-site sources include parent materials, horticulture

TABLE 1. List of toxicants being dispersed by

humanity into the air, water, and soil of the Earth.

�Metals
� Organic pesticides (herbicides & insecticides)
� Petroleum hydrocarbons
� Polycyclic aromatic hydrocarbons
� Per- and polyfluoroalkyl substances (PFAS)
� Seepage from landfills
� Seepage from solid waste dumps
� Solvents
� Tar, coal, coal ash
� Vehicle related residues along roadways
� Building material residues
� Smelting and residues
� Fertilizer by-products
�Warfare production and by-products
�Medical and pharmaceutical waste

Children have increased suscep-
tibility to toxicants in soil com-

pared with adults.

Toxicants persist longer in soil
than in air and water.
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or agricultural runoff, and hazardous landfill wastes

that can be flushed downstream by river systems. Lin-

ear contamination of aerosols by road traffic is also

regarded as a non-site source. Site contamination

results from local industry, peeling paint, fertilizer,

sewage sludge application, and pesticides. Specific

urban site contamination sources arise at abandoned

industrial sites, accident or spill sites, and waste

deposit sites.

Contaminants in soil tend to persist for much longer

periods of time than in the air and water compartments

of the biosphere. Contamination of soil, especially by

trace metals, appears to be virtually permanent

according to human time scales, although concentra-

tions may slowly decrease by leaching, plant uptake,

erosion, or deflation.9 The residence time for metals

varies with depth of the soil horizon under consider-

ation. In the top 20 cm of the soil horizon, the resi-

dence time appears to be centuries, while in the

topsoil 2.5 cm of the horizon, the residence time

appears to be decades.12

The metals of major concern in urban soils are arse-

nic (As), barium (Ba), cadmium (Cd), chromium (Cr),

copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), and

zinc (Zn).11,13 Although all of these are naturally

occurring elements in rocks and minerals, each of them

has been concentrated through various smelting, indus-

trial activities, and manufacturing processes that leave

traces in urban soil. Each metal behaves differently and

may be found in a variety of compounds in soil.

In addition to inorganic metal contaminants, organic

contaminants are also found in soil. Some of these

potentially hazardous toxicants include dioxins, fur-

ans, polychlorinated biphenyls (PCBs), hydrocarbons,

pesticides, and volatile organic compounds (VOCs).

PCBs, benzene, and polycyclic aromatic hydrocarbons

(PAHs) are among the top ten priority hazardous sub-

stances listed by the Agency for Toxic Substances and

Disease Registry (ATSDR).14

Certain types of geologic formations can contribute

high concentrations of elements such as Cr, Cu, and

Ni.15 Underground pipes can contribute compounds of

ammonia, boron, sulfate, chloride, phosphorus and

trace metals.8 Dusts can contribute many metals of

concern such as Cd, Cu, Pb, and Zn,15,16 as well as

PAHs and PCBs.17 Vehicle emissions, particularly

from diesel fuels, include benzene and PAHs and met-

als such as platinum and rhodium.14

While each of these contaminants may present par-

ticular environmental and human health issues, lead is

one substance that has received particular attention,

and because of its toxicity, will be discussed here at

length. Lead is the 38th most abundant mineral in

Earth’s crust, and exists in crustal rocks with an aver-

age concentration of approximately 20 parts per mil-

lion (ppm)18 and in various rock types with an

average of approximately 3 to 40 ppm.19 It is dense,

malleable, has a low melting point, and is easy to use

for a variety of purposes. It has been mined for at least

8,000 years20 and has been used in virtually all aspects

of manufacturing and industry, including pipes, the

printing press, bullets, paint, gasoline, and numerous

‘green’ technologies such as hybrid batteries.21 Even

though the negative health impacts of exposure to this

material have been noted for at least 2,000 years22 and

numerous researchers have documented such impacts

for decades23,24 hundreds of thousands to millions of

lives have been altered during the long battles to regu-

late the commercial use of this element.25,26 Because

of its pervasive presence in environmental media and

pernicious impacts on human health, lead serves as a

key indicator for soil contamination Fig. 1.

Fig. 1. Gasoline lead consumption in the USA, Germany,
France, United Kingdom, and Italy from 1930 through 1993.
Associated with vehicle traffic and highway development, the
USA consumption was massive compared with the leaded gaso-
line consumption by the four European countries. Figure Credit:
Boyle EA et al. 2014. Anthropogenic lead emissions in the
ocean: The evolving global experiment. Oceanography 27(1):
p.70, Fig.1. http://dx.doi.org/10.5670/oceanog.2014.10.
https://creativecommons.org/licenses/by/4.0/. (For interpre-
tation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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From the 1920s to 1986, large quantities of tetra-

methyl and tetraethyl Pb were added to gasoline. By

January 1, 1986 when leaded

gasoline was rapidly phased out

in the U.S., 5 to 6 million met-

ric tons of Pb had been used as

an additive, and approximately

75% of this Pb had been emit-

ted into the atmosphere.27

Thus, an estimated 4 to 5 million tons of Pb had been

released into the U.S. environment as a result of gaso-

line emissions.27 Soil Pb has also been shown to be

proportional to highway traffic flow, resulting in

differential deposition depending on city size and

within an inner city versus outlying community

location.28�30 In New Orleans, Louisiana, an esti-

mated 900 tons of lead were released by vehicle

exhaust during the six decades of commercially avail-

able leaded gasoline use.29�31

A contemporary lead air pollution event occurred in

Paris on April 15�16, 2019. The devastating fire at

the Notre Dame Cathedral in Paris released over 460

tons of lead into the environment. The lead dust from

the fire was deposited on surrounding soils of Paris.

Levels of lead dust near the site were up to 1,117 mg/

m2 (120,774 mg/ft2) � 1,300 times higher than French

safety guidelines (Fig. 2).32

Soil contamination is intimately linked to both air

and water pollution. Unlike the visual images of smog

hovering over a busy city or dirty sewage water con-

taminating a freshwater source, however, soil pollu-

tion is totally invisible and easily overlooked.33

Contamination of air and water sources are addressed

in the Clean Air Act and Clean Water Act, and com-

monly receive intense and sustained attention from

the media. For example, the consequences from the

Flint water crisis, first recognized in 2015, continue to

be regularly covered by the press in 2019.34 Few

would argue that attention to lead in water is unwar-

ranted or unnecessary, however, lead contamination

of soil has not received even a fraction of this consid-

eration. Soil is a source of contaminant exposure that

must be evaluated when assessing environmental con-

ditions and children’s health.

Exposures
There are numerous ways in which children are

exposed to soil contaminants. Fig. 3 illustrates several

common pathways.35 Children have a natural curiosity

and they acquire knowledge through play interaction

with their environment. They gather information in

many ways, including smelling,

touching, and mouthing

(Fig. 3). There are two major

exposure pathways for human

exposure to contaminated

soil.35

Inhalation

The inhalation route of exposure is represented by

the top right of Fig. 3. Particle size determines the fate

and transfer of various sized particles. Soil is a reser-

voir for aerosol particles. After initially becoming air-

borne, particles are eventually washed out or

deposited on the ground and, during dry climate con-

ditions (late summer and early fall), the particles can

be resuspended.37

Soil pollution must be evaluated
when assessing children’s

health.

Fig. 2. Photo of the flames and lead-dust contaminated smoke
emitted from the burning roof at Notre Dame Cathedral on
April 15, 2019. Lead dust from the burning roof contaminated
communities of Paris surrounding Notre Dame. Photo credit:
Milliped, Wikimedia creative commons, Notre Dame on fire
15042019�1 (cropped).jpg. https://creativecommons.org/
licenses/by/4.0/. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 3. US EPA illustration of major exposure pathways of air, water, and soil exposure. Credit: U.S. EPA. Soil Screening Guidance:
User’s Guide, Second Edition. EPA/540/R-96/018. July 1996 http://www.epa.gov/superfund/resources/soil/ssg496.pdf.
https://creativecommons.org/licenses/by/4.0/.

Fig. 4. Particle size determines the fate and transfer of toxicants. Combustion particles < 2.5 mm pass through the cell walls of
alveoli and enter the circulatory system. Credit: US EPA. https://creativecommons.org/licenses/by/4.0/. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4 shows the relationship of particle sizes of PM 2.5

and PM10 to each other in comparison with a human

hair. Combustion creates the smallest, and often invisi-

ble, particle sizes.

Most of the human population now lives in cities, and

air pollution is a threat to the

health of urban dwellers.33 Inha-

lation exposes all people; how-

ever, children are especially

vulnerable to the hazards of air-

borne dusts.36 Studies examining

inhalational exposure in children

focus on measuring inhalation

rates in comparison to adults.

Children have a higher resting

metabolic rate and oxygen con-

sumption rate than adults. The

oxygen consumption rate of a child between 1 week and

1 year of age is 7 mL/kg/minute, while the rate for an

adult is 3�5 mL/kg/minute.36 This places oxygen con-

sumption for infants at nearly double that of adults,

increasing their exposure to hazardous dusts. The U.S.

Environmental Protection Agency (EPA) suggests that

the recommended daily inhalation rates of hazardous

dusts are less than or equal to 4.5 m3/day for infants,

with incremental increases tolerated with age, resulting

in up to 10 m3/day in 6�8-year-olds. At age 15�18, the

EPA recommends less than 17 m3/day for males and 12

m3/day for females.36 Although these inhalation rates

may be useful markers, it is not straightforward to assess

the quality of inspired air.

Dust inputs, dust loading and storage in soils take place

in the context of the city. At the scale of an individual

home and surrounding property, contamination is depen-

dent on of the city traffic congestion and location of

industrial or manufacturing facilities. At some locations,

especially inner-city communi-

ties, dust exposures are elevated,

whereas in outer communities’

dust exposures are attenuated.

Under conditions such as

drought, wind can easily pick up

soil and re-suspend the contami-

nants into the air. This is espe-

cially common in seasonally dry

and arid areas and puts children

at risk of inhalation of hazardous

transitory dusts.37

Ingestion

Hand-to-mouth and object-to-mouth behaviors are

controlled by specific DNA-directed characteristics that

begin in utero and continue into childhood.36 This nor-

mal behavior exposes children to a variety of contami-

nants as they touch and mouth different objects.38,39 In

addition to exposures in outdoor play areas, toxicants

from outdoor sources can be tracked into the home.40

Toxicants are prevalent in nearly every child’s play area.

Children’s exploratory mouthing behaviors of non-

food substances peak between one to three years of age

and then decrease over time.38,39 Exposure is

Fig. 5. Exposure pathways for particulate air lead inputs and the deposition in outdoor soils and indoors at individual properties.
Topsoil (~2�3 cm) lead undergoes a gradual decrease by about half in 10�20 years.52

Air lead particles deposit on
soils.

Soils are a legacy reservoir for
exposure to lead dust outdoors

and indoors.
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exacerbated in children with pica, who often deliberately

ingest soil and contaminants.41 Geophagy is a unique

form of pica that involves consuming soil as a cultural

practice, and ingestions can be in excess of 50,000 mg/

day. This practice is common in regions of Africa. While

the prevalence of geophagy is not well documented,

studies estimate that the behavior is practiced by

28�84% of some studied populations.41,42

Fig. 5 illustrates the exposure pathways for lead in air

and soil. Open stars represent inhalation and closed stars

represent ingestion pathways. As illustrated on the right

side of Fig. 5, the critical key to environmental signaling

is the aerosol input whereby inhalation and ingestion are

substantial when aerosol inputs are large and diminished

when aerosol inputs are small. Soils then become a reser-

voir and source of lead dust.43,52 Aerosols and soil dust

freely move into home interiors and track in on

footwear.40,44,45 In this way the legacy of aerosol lead

dust inputs into soil develops into a route of multiple

inhalation and ingestion exposure pathways in outdoor

and indoor environments.

Other pathways of exposure

Water can transfer environmental contaminants

throughout the hydrologic cycle. In this way, toxicants

are deposited in local water sources and groundwater,

which can lead to human ingestion.

Dermal absorption is another method of exposure and

is tied closely to investigative behaviors in children.

Children often explore their environments with bare feet

and hands, increasing the surface area of exposure.

Although the best practices of measuring the magnitude

of dermal exposure are often debated, many studies have

shown that dermal absorption is a significant pathway

for chemical exposure.49 Children also have a greater

body surface area compared to adults. Vegetable and

fruit produce also can acquire toxicants during growth,

and this contamination can indirectly affect those who

consume the produce. These pathways of contamination

include ambient pollutant deposi-

tion, absorption from soil, disso-

lution into water that supplies

plants, and pesticide and fertil-

izer use. The toxicants can be

carried up the food chain into

meat, poultry, and dairy products.50 Although toxicants

can affect all who consume them, children are at unique

risk due to the differences in variety of food consumed.

Studies have shown that children most commonly

consume dairy and fruit products50 that may contain

environmental toxicants.

Measuring exposure
Measuring exposure to soil ingestion is not straightfor-

ward, and the U.S. EPA has identified three methodolo-

gies to do so. These include the tracer element method,

the biokinetic model comparison method, and the activ-

ity pattern method. Each method has limitations in esti-

mating true ingestion rates.46

� The tracer element method quantifies the amount of

soil ingested based on the presence and quantity of

tracer elements measured in feces and urine.
� The biokinetic model comparison method compares

direct measurements of biomarkers with predictions

from a model including all possible modes of expo-

sure to create an aggregate exposure evaluation.
� The activity pattern method combines information

about behaviors with time spent in various locations

to evaluate potential exposure

The U.S. EPA has chosen to use all three methods,

with an emphasis on the biokinetic model comparison

method, to make recommendations on maximum soil

ingestion values in the Child-Specific Exposure Fac-

tors Handbook.47 The handbook recommends a maxi-

mum average soil and dust ingestion of 60 mg/day for

children ages 6 weeks to 1 year and 100 mg/day for

children ages 1 year � 21 years. Ingestion is defined

as pica when rates reach 1000 mg/day.48

As children explore their home and outdoor play envi-

ronments, they are exposed to many toxicants that can

have serious health effects.51 Although it would be

impossible to completely protect children from exposure

to every hazardous substance in their environment,

there are many actions that can, and should, be done to

minimize the exposure risks. When evaluating these

risks, it is important to realize the interactions between

pollutants in the soil, air, and water and how these exist

in a dynamic environment which

constantly alternates between

storing and transferring toxicants

from one place to another.52

Conclusion
Children can be exposed to hazardous substances

through many exposure routes. Although many steps

have been taken to decrease the contamination of

Toxicants in soil, air, and water
exist in a dynamic environment.
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water and air toxicants, addressing soil as an impor-

tant source of toxicants is usually ignored. Soil con-

tamination must be proactively addressed in a manner

similar to air and water pollution.
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Soil toxicants that potentially
affect children’s health

Sara P. Egendorf, MS,a Andrew D. Gailey, MS,b Aubrey E. Schachter, MS,c and
Howard W. Mielke, PhDd,*

Soil pollution is a global phenomenon, and children are
uniquely susceptible to the wide range of toxicants that persist
in topsoil. Given their increased exposure through mouthing
activities, increased body surface area, likelihood of breathing
air closer to soil, and immature immune and elimination sys-
tems, it is essential to understand the mechanisms of children’s
exposure and the potential health effects of toxicants found in
soil. Here we describe the sources and toxicological profiles of
a range of inorganic and organic soil contaminants, including
arsenic (As), cadmium (Cd), lead (Pb), mercury (Hg), benzene,

toluene, ethylbenzene and xylenes, chlorinated dibenzo-p-diox-
ins, polychlorinated biphenyls (PCBs), polycyclic aromatic
hydrocarbons (PAHs), per and polyfluoroalkyl substances
(PFAS), as well as agricultural and domestic sources of pollu-
tion. The aim of this article is to increase awareness regarding
the risks and health impacts of contaminated soil, and to
encourage further research and efforts aimed at mitigating
children’s exposure.

Curr Probl Pediatr Adolesc Health Care 2020; 50:100741

Introduction

H
ealth effects of soil pollution vary widely

depending on pollutant type, level of expo-

sure, and vulnerability. Children are partic-

ularly vulnerable to a wide variety of soil

contaminants because of their specific behaviors

and their unique body physiology.1 Common pollu-

tants found in soil environments from both natural

and anthropogenic sources are outlined below.

Important health effects secondary to exposure to

these pollutants are also described as well as their

influence on environmental signaling cascades.

Numerous health effects are

associated with toxicants found

in soil.

Epidemiology
Humans have been mining and concentrating sub-

surface materials at Earth’s surface for thousands

of years. People living on Michigan’s Keweenaw

Peninsula, for example, mined copper and subse-

quently left residues of lead, titanium, magnesium,

and iron in lake sediments 8000 years before the

present.2 Early traces of soil or sediment pollution

have been found throughout the globe,3 and soil

contamination has become increasingly extensive

since the Industrial Revolution. Although the

development of technology is often rapid, the

establishment of policies and

regulations to curb toxicants

typically trails the rapid

advances of industrial produc-

tivity. Most industrialized

countries have established

policies for recognizing and

regulating soil pollution, but actions do not keep

pace with development. Clinical measurements and

techniques for quantifying the degree of soil con-

tamination as well as its effects on human health

remain largely under-characterized. Lack of access

by environmental regulatory agencies, lack of

research, and limited resources for remediation fur-

ther complicate such tasks. Additionally, most

studies focus on specific geographical areas and are

therefore limited in scope.

From the aThe Advanced Science Research Center at the Graduate Center

and Brooklyn College of the City University of New York, New York, NY

10031, United States; bThe University of North Carolina School of Medi-

cine, Chapel Hill, NC 27516, United States; cLouisiana State University

Health Science Center, New Orleans, LA 70112, United States; and dDe-

partment of Pharmacology, Tulane University School of Medicine, New

Orleans, LA 70112, United States.

*Corresponding author.

E-mail: hmielke@tulane.edu

Curr Probl Pediatr Adolesc Health Care 2020; 50:100741
1538-5442/$ - see front matter
� 2020 Elsevier Inc. All rights reserved.
https://doi.org/10.1016/j.cppeds.2019.100741

Numerous health effects are
associated with toxicants found

in soil.

Curr Probl Pediatr Adolesc Health Care, January 2020 1

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cppeds.2019.100741&domain=pdf
mailto:hmielke@tulane.edu
https://doi.org/10.1016/j.cppeds.2019.100741


More research is needed to

characterize the extent of soil

contamination and effects on

human health.

One large scale study con-

ducted by the U.S. Environmen-

tal Protection Agency (EPA) in

2000 presented an initial effort to collect and analyze

existing and readily available data on measures relevant

to children’s health and the environment. This report,

called America’s Children and the Environment (ACE),

compiled data on children’s health and the environment,

detailed exposures and changing trends in children’s

health throughout the past two decades, informed discus-

sions on improvements, and helped track trends in child-

ren’s environmental health to minimize impacts. The

most recent revision of this report was published in

October 2019.4 The report found that as of 2018, approx-

imately 2% of children in the U.S. were living within

one mile of a Corrective Action or Superfund site that

may not have had human health protective measures in

place. This proportion differed by race: about 3% of

Black, Asian, American Indian/Alaska Native, and His-

panic children, 4% of children from “All Other Races,”

7% of Native Hawaiian and Other Pacific Islander chil-

dren, and 2% of White children were found to live in

proximity to such sites. 70% of Superfund sites were

located within 1 mile of federally assisted housing,

which highlights the environmental injustice of this issue

and the disproportionate burdens of exposure placed on

low income communities and communities of color.5�7

Children are unique
Children are more susceptible to toxicants than

adults, given their increased exposure through mouth-

ing activities, increased body surface area, breathing

air closer to soil, and immature immune and elimina-

tion systems. One example of an immature physiolog-

ical system can be illustrated by arsenic metabolism.

While an adult can methylate arsenic compounds into

less toxic compounds for elimination, a child’s ability

to do this is not fully developed and children are thus

less able to detoxify the compound.8

Inhalation
Dust particles that can reach the lung and settle in the

alveoli without being filtered by the body’s natural mech-

anisms can cause long-term health damage. For example,

extremely tiny exhaust particles

(<2.5 mm) from tetraethyl lead

(TEL) additives in gasoline were

inhaled, passed by the body’s nat-

ural removal mechanisms and

became absorbed directly into the

blood stream. As a result, blood

lead (Pb) levels were directly related to the quantity of

Pb aerosols from gasoline. Blood Pb declined in step

with the phaseout of leaded gasoline that began in 1975.9

Inhaled metal 2.5-micron particles enter the blood stream

and do not cause obvious symptoms because the inhaled

particles are widely distributed throughout multiple organ

systems. This concern was expressed by Yandell Hender-

son, Yale physiologist, during the 1925 hearings on pub-

lic health concerns about allowing the use of TEL in

gasoline.10

Direct damage to the lung also occurs from inhalation

of dust particles that settle in the alveoli without being

filtered by the body’s natural mechanisms. A commonly

inhaled dust particle is silica. Quartz silica deposits in

the alveoli and causes irritation and fibrosis. This can

ultimately cause restrictive pulmonary disease. Other

commonly inhaled dust particles causing lung disease

include toxicant asbestos, coal dust, beryllium, along

with bacteria, animal proteins, and mold toxins.11

Although exposure to particles is not limited to the

younger population, children are uniquely vulnerable

to adverse effects given their immature physiology

and increased exposure rates. Physiological differen-

ces include underdeveloped lungs that are less able to

repair damage, mouth ventilation that limits filtration

by the nasal passages, and higher baseline ventilation

rates that inspire pollutants more deeply into the lung,

increasing exposure and delaying clearance.12

Together, these features can make children more sus-

ceptible to acute respiratory disease and asthma. In

2017, 8.4% of U.S. children were found to have

asthma; the rate of emergency room visits for asthma

and other respiratory causes was 760 visits per

10,000 U.S. children in 2016.4

Ingestion
The U.S. EPA soil lead standard for residential prop-

erties with Federal funding ranges from 400 mg/g
(ppm), for bare soils where children play, to 1200 mg/g
for remaining areas. Soil ingestion is less likely than

dust inhalation to result in widespread systemic health

effects, and more likely to result in gastrointestinal

More research is needed to
characterize the extent of soil
contamination and effects on

human health.
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effects. Geophagy is an extreme example of soil

ingestion, but it is not common in the U.S. Geophagy

provides an example of the health effects that result

from excessive ingestion. As discussed previously,

children ingest soil at a much higher rate than adults,

making them susceptible to the contents of the soil.

Geophagy has been shown to have negative health

consequences including reactions to lead or other

anthropogenic toxicants, and parasitic organisms

including helminths and Clostridium tetani, chronic

intestinal blockage, and even excessive tooth wear.11

Although some of these effects are likely limited to

ingestion of large quantities of soil, they may occur

with even small ingested soil quantities.

The neurologic system is especially vulnerable to

exposure to metals and pesticides, and even small

amounts of inhalation and ingestion can cause far

reaching and potentially irreversible effects. Lifetime

body burden begins early and, depending on the toxi-

cant, continues throughout life. Studies are being con-

ducted to quantify the body burden in adulthood. Rolf

Tore Ottesen, geochemist and researcher living in

Trondheim, Norway (and major part of the team

responsible for Norway’s Clean Soil Act) had his

blood tested; many exotic metals and organic toxi-

cants were found as illustrated in Fig. 1.

Most health impacts from

toxicant exposure occur as a

result of inhalation and inges-

tion.

The following section out-

lines some common soil con-

taminants and their health

effects on children. This list provides examples of soil

toxicants that can affect children but is not compre-

hensive. Toxicants of major interest are listed in

Table 1.

Inorganic contaminants: metals and metalloids

○ Arsenic

■ Arsenic (As) is a common and prevalent element

found in many environments. Arsenic exposure

comes mainly from contaminated water, crops,

and tobacco.13 Arsenic also may be especially

common underneath and near chromium-copper-

arsenate (CCA) treated wood playground equip-

ment at public parks.14 Arsenic is used in photo-

electric devices, glassware, Pb-acid batteries, and

in copper alloys. Until the 1970s, arsenic was used

extensively for manufacturing pesticides. Although

the prevalence in pesticides has decreased, organic

As compounds are still in production.15

■ Arsenic poisoning can occur acutely or through

chronic exposure and subsequent accumulation

in the body. In acute poisoning, symptoms are

generally associated with the gastrointestinal

tract and include nausea, vomiting, abdominal

pain, and diarrhea. Other signs and symptoms

may include a metallic taste or a garlic odor to

breath and stool.16 More severe consequences of

acute arsenic poisoning include acute encepha-

lopathy, acute kidney injury, severe hypoten-

sion, respiratory failure, and QTc prolongation

leading to life-threatening cardiac arrhythmias.17

■ Chronic exposures are more likely to occur in

children. Chronic arsenic exposure occurs

through ingestion of small amounts of arsenic

over time or through dermal contact. Chronic

exposure through drinking water has been shown

to cause various skin lesions, neurological effects,

high blood pressure, diabetes mellitus, respiratory

diseases, and a range of cancers associated with

the skin, lung, and bladder.18 The effects of

chronic exposure on the neurologic system may

result in progressive

numbness and tingling of

the soles and palms.19

○ Cadmium

■ Cadmium (Cd) is one of

the most ecotoxic metals,

adversely affecting all

biological processes in humans, animals, and

plants. The main uses of cadmium are in battery

production, yellow pigment, coatings and stabil-

izers. Because of its particular physical and

chemical properties, cadmium is also added to

alloys and various plastics.15 Cadmium in soils

and surface environments is from anthropogenic

sources such as rock phosphate fertilizer, fossil-

fuel combustion, cement manufacturing and

metallurgy, municipal waste and sewage, as well

as atmospheric deposition. In most Western

countries, rock phosphate fertilizer and atmo-

spheric deposition alone account for over 90%

of the anthropogenic sources of cadmium.20

■ Cadmium toxicants, like other industrial forms

of soil pollution, are highly variable in air, water,

and soil. Anthropogenic sources of cadmium in

Most health impacts from toxi-
cant exposure occur as a result
of inhalation and ingestion.
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the environment are attributed mainly to mining,

refining, and burning of coal and fossil fuels.

Cadmium in the environment does not break

down, but instead changes form. Some forms

dissolve in water, whereas others bind strongly

to soil particles.21

■ Cadmium first became a concern in the 1960s,

when a painful bone disease ‘itai�itai’ was

reported in Japan. The Cd contamination was a

result of transported waste from a zinc�lead

(Zn�Pb) mine deposited by a river into rice

paddy. People who consumed the toxicant pol-

luted water and rice were found to have accumu-

lated high quantities of cadmium that caused a

serious osteoporosis-like bone disease referred

to by the Japanese as ‘itai�itai byo’ or

‘ouch�ouch disease’.21

■ Regardless of its chemical form, exposure to

cadmium can cause severe health effects, includ-

ing lung and kidney damage. The Agency for

Toxic Substances and Disease Registry

(ATSDR) has concluded that cadmium expo-

sures are likely or suspected causes of cancer in

humans.22 Cadmium also has been shown to be

an endocrine-disrupting chemical with estro-

genic properties.21 Although more research is

needed on how cadmium affects younger popu-

lations, animal testing has revealed that younger

animals absorb more cadmium than adults,

which likely has negative influences on learning,

behavior, and development.22

○ Lead (Bly)

■ Lead (Pb) is a common and dangerous environ-

mental toxicant. Its early use initially came from

smelting during ancient times, particularly in

Rome. Environmental contamination peaked with

the use of leaded motor fuels and paint in the

20th century, although each of these uses has

since been curtailed. Its negative health effects

persist, and soils contaminated from airborne lead

are an insidious exposure reservoir. Tetraethyl

lead (TEL) is still used in aviation gas for recipro-

cating airplane engines in private aircraft, and

nearly 60% of lead aerosols in the United States

can be directly tracked to TEL additives in this

fuel.23 At the current time, the largest sources of

lead production include lead-acid batteries for

motor vehicles, as well as outdoor paints, pig-

ments, ammunition, ceramic glazes, jewelry,

toys, cosmetics, and medicines. Drinking water

delivered through lead pipes and lead solder also

can be contaminated.24 The 2019 ACE report

found that in 2005�2006, 13% of children ages

0�5 years lived in homes with interior lead dust

Fig. 1. Body burden of toxicants in Rolf Tore Ottesen’s blood of
Norway. Toxicants appear in blood, fatty tissues, and bones of
people throughout the world. First published in Adresseavisen,
Norway, 4 Nov 2011, with Dr. Ottesen’s permission.

TABLE 1. Toxicants, years of life lost, and deaths per 100,000. Re-drawn

From Lanphear et al. 2005.28

Toxicant Years of life lost (per 100,000) Deaths (per 100,000)

Asbestos 173.9 11.7
Lead 113.3 8.7
Arsenic 6.9 8.7
PAHs 1.3 0.05
Cadmium 0.2 0.0
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hazards and 11% lived with interior deteriorated

lead-based paint hazards.4 The median concentra-

tion of blood lead in children between 1�5 years

was 0.7 ug/dL in 2013�2016, however the

median was 0.9 ug/dL in Black children and

0.7 ug/dL in White, Mexican-American children,

and children of “All Other Races/Ethnicities.”4

■ Lead exposure of children primarily influences

brain and nervous system development. Acute

high exposure can result in convulsions, coma,

and death. Residual effects can include mental

disability and behavioral disorders, including

violence.25�27 At lower exposure levels, lead

exposure can cause injury to brain development

manifesting as reduced intelligence, reduced

attention span, increased antisocial behaviors,

and poor school performance.28 It can also cause

a variety of health effects, including anemia,

hypertension, renal injury, reproductive organ

injury, and damage to the immune system.24

There is no known safe level of lead exposure.29

○ Mercury

■ Mercury (Hg) is a global toxicant. The US Clean

Air Act Amendments of 1990 identified Hg as a

hazardous air pollutant due to its toxicity, avail-

ability, potential bio-accumulation in food chains,

and human health risks.15 Common uses of Hg

include dental amalgam fillings, analytical instru-

ments, batteries, florescent lamps, wood fillers,

and as a fungicide in paints and pesticides. Many

of these products have become regulated, but Hg

continues to be used in batteries, and compact

fluorescent lights. Common sources of environ-

mental Hg arise from its use as an amalgamator

of small gold particles from soil and sediments

when mining soil and sediments.15

■ Mercury has been found in higher concentrations

in urban soils than ambient background concen-

trations in soils outside of cities.30 Urban environ-

ments may receive Hg inputs from a variety of

human activities such as coal-fired power plants,

waste incinerators, steel mills and foundries,

cement kilns, utility and industrial boilers, brick

refractories, refineries, landfills, and asphalt

plants. Food web accumulation occurs where

environmental conditions promote bacterial con-

version of urban Hg loads into methylmercury.

As a result, unsafe levels of Hg in fish can occur

in urban streams flowing from areas with high Hg

concentrations in the soil, streambed sediment,

and water, presenting above-average risks for Hg

exposure to those who consume fish from urban

stream and coastal waters.

■ Mercury is found in three main chemical forms:

elemental (metallic, Hg0), inorganic compounds

(I-Hg), and organic compounds (such as methyl-

mercury, MeHg).31 Most Hg exposure occurs

from methylmercury from sources such as sea-

food, inorganic mercury from food, and elemen-

tal mercury vapor from dental work.32 I-Hg is

accumulated mainly in the kidneys where it

causes kidney damage, while Hg0 is generally

inhaled, and rapidly absorbed and distributed to

all major organs.31 Hg may have potentially per-

manent impacts on brain and nervous system

development of fetuses and children, on human

endocrine systems.33,34 High Hg levels in chil-

dren causes learning disabilities, psychological

disorders, and other neurological disorders.35

Organic contaminants: persistent, volatile, and
pesticides compounds

○ Benzene, toluene, ethylbenzene and xylenes

■ Benzene naturally occurs from volcanoes and for-

est fires. As a toxicant, large quantities of benzene

are used to manufacture plastics, synthetic fibers,

and rubber. Benzene, toluene, ethylbenzene and

xylenes (BTEX) have been extensively used as

raw materials, organic solvents in industrial pro-

cesses, and in pesticides. Because these materials

are highly volatile and soluble, BTEX can easily

be dispersed in the environment at regional

scales. Sources of BTEX emissions include com-

bustion of wood and fuel, traffic, adhesives,

degreasing agents and aerosols.36

■ BTEX in soil can either evaporate to the air or

migrate deeper in the soil profile. Small dust par-

ticles can also be suspended and distributed

across large areas, eventually redepositing back

to the soil surface. Exposure to such dusts in the

air, soil, water and plants can cause adverse

effects to those exposed through inhalation or

ingestion.37 Microbes can facilitate biodegrada-

tion of BTEX over time.38

■ BTEX are known neurotoxicants, with potential

for bioaccumulation through the food chain.

Chronic exposure to toluene, ethylbenzene and
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xylenes has been associated with adverse effects

on human nervous systems, respiratory systems,

liver and kidney function.39 When BTEX is

detected in air, soil, dusts and groundwater, they

may potentially have adverse effects through

inhalation, dermal adsorption, and ingestion.

Benzene, in particular, is classified as a carcino-

genic compound.40

○ Chlorinated dibenzo-p-dioxins

■ Dioxins are among the most hazardous anthropo-

genic toxicants in the environment, and their toxic-

ity has been extensively studied in both humans

and animals. They arise as unintentional byprod-

ucts of industrial operations. Sources of exposure

include chlorinated pesticides, treated lumber,

municipal waste, and incineration.41 Polychlori-

nated dibenzo-p-dioxins (PCDDs), dibenzofurans

(PCDFs) and other persistent organic pollutants

(POPs) can persist in soils, sediments and waste

repositories for extended periods of time, ranging

from decades to centuries. Application or improper

disposal of pesticides, polychlorinated biphenyls

(PCBs) and other organochlorine chemicals, as

well as waste recycling, has created contaminated

sites. The leachates and groundwater impacted by

these sites require ongoing monitoring and further

remediation. In 1994, the U.S. EPA concluded that

contaminated sites and other reservoirs of these

substances were likely to become the major source

of contemporary pollution problems.42

■ Many of these hydrophobic and lipophilic com-

pounds are highly resistant to metabolism in ver-

tebrates, including humans. Dioxin-contaminated

soil can result in biomagnification in food chains,

and high tissue concentrations may be found in

top predator species.43 Oral pathways are the

most common route of exposure. Ingestion of

contaminated soil, water, fish, beef, dairy, and

vegetables may be significant in certain areas.

Associated health impacts include chloracne, der-

mal hyperpigmentation and hirsutism, elevated

hepatic enzyme levels, increased risk for diabetes,

and altered reproductive hormone levels.41

○ Polychlorinated biphenyls

■ Polychlorinated biphenyls (PCBs) are a group

of over 209 industrial toxicants that have

been found in almost every component of

global ecosystems, including air, water, soil,

sediments, fish, wildlife, and even human tis-

sues and milk.44 Although they have not been

manufactured in the U.S. since 1977, they still

exist in pre-1979 fluorescent light ballasts, electri-

cal capacitors and transformer oils. They are not

easily broken down and can bind strongly to soil

particles.45 PCBs used in construction materials

such as caulking used around windows, expan-

sion joints, and bath fixtures are sources of con-

tamination in building interiors and surrounding

exterior soils. PCBs in soil can be mobilized,

which can present further hazards for leachate

and groundwater.46

■ PCBs can be absorbed in the gastro-intestinal

tracts of animals, especially when ingested with

organic solvents or dietary lipophilic carriers, and

when bound to soil particles.47 Responses to PCB

exposure include developmental and reproductive

toxicity, dermal toxicity, endocrine effects, hepa-

totoxicity, carcinogenesis, and the induction of

diverse phase I and phase II drug-metabolizing

enzymes. When short-term occupational exposure

occurs, the effects may be reversible, with no

changes in overall mortality or cancer mortality

being reported. Research has demonstrated devel-

opmental deficits in infants and children associ-

ated with in utero exposure to PCBs.44

○ Polycyclic aromatic hydrocarbons

■ Polycyclic aromatic hydrocarbons (PAHs) are

organic sources of hydrocarbons that are found in

soil and persist in the environment due to anthro-

pogenic combustion activities.48 PAHs include

over 100 different compounds formed during

combustion and can occur naturally (from burn-

ing wood or meat) or as a product of manufactur-

ing (in coal tar, plastics and pesticides). A study

in Mexico found that sources affecting children

included biomass combustion, brick kilns, sani-

tary landfills with waste combustion, and automo-

bile traffic.49 Each of these sources can deposit

PAHs into the soil, where they can be ingested by

children, absorbed into crops, or leached into

water sources. PAHs have been studied in soils in

New Orleans, LA and Detroit, MI, where they

were closely associated with lead and zinc con-

centrations, and directly related to vehicle traffic

flows.50,51 Although PAHs can break down with

sunlight, or from microorganism activity, they

can also cling to soil particles and contaminate

groundwater, plants and animals.52

■ Exposure to PAHs has been linked to ADHD-

like behaviors and cancer. Most research
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evaluates exposure to PAHs as a result of air pol-

lution.53 Children with prenatal exposure to

PAHs have higher rates of cognitive disability

later in life, suggesting that PAHs are harmful to

the developing fetal brain.54 PAHs have been

shown to cause skin irritation and inflammation

in an acute setting, and decreased immune func-

tion, cataracts, kidney and liver damage, breath-

ing problems, and hemolysis, depending on the

route of exposure.55 More research to examine

the effects of soil PAHs on health is needed.

○ Per and polyfluoroalkyl substances

■ Per and polyfluoroalkyl substances (PFAS) are a

group of human-made compounds that include

perfluorooctanoic acid (PFOA), perfluorooctane

sulfonate (PFOS), GenX and a number of other

chemicals. PFAS have been used for a range of

industries worldwide, and have been in produc-

tion in the U.S. since the 1940s. PFOA and

PFOS are the most studied forms, and have

shown to be persistent in human bodies and the

environment.56 These compounds can be found

in food, particularly when packaged in materials

containing PFAS, processed with PFAS in

equipment, or grown in soil or water contami-

nated by PFAS. Commercial household products

containing PFAS include stain resistant and

water repellent fabric, nonstick cookware (such

as Teflon), polishes, paints, cleaning products,

and fire-retardant foam. Workplace exposures

include production and manufacturing that use

PFAS (such as electronics industries and oil

extraction). Drinking water also may be a source

of exposure, particularly if localized pollution

from manufacturing, landfill, wastewater treat-

ment, or firefighting training sites. Consuming

fish and animals with accumulated PFAS also

can be sources of exposure.57

■ PFAS can lead to adverse health outcomes in

humans, as well as laboratory animals. Most

health data are focused on PFOS and PFOA as a

result of their long history of scientific study, but

adverse health effects of other related chemicals

are emerging. In 2000, analyses of serum sam-

ples from the National Health and Nutrition

Examination Survey (NHANES) found that

PFOS and PFOA were detectable in all Ameri-

cans.56 PFAS are transferred through the pla-

centa and mother’s milk, and concentrations in

children tend to be higher than in adults. PFOAs

are “likely to be carcinogenic in humans,” and

immunological impairments may also result

from exposure.58 Common findings indicate

associations with increased cholesterol levels, as

well as reproductive and development

impairment, liver and kidney damage.59

○ Agricultural and Domestic Sources of Pollution

■ Pesticides and herbicides are commonly used in both

large-scale industrial agriculture and small gardens.

These chemicals can persist in the environment,

causing both acute and chronic toxicity. The most

commonly used pesticides include organochlorines,

pyrethroids, carbamates, organophosphates, and nic-

otinoids.4 Organochlorines such as DDT were

removed from the market due to their extreme

adverse ecological effects to bird populations, and

tendencies to persist in the environment. Pyrethroids

and carbamates also target the nervous systems and

result in many detrimental health effects.

■ Organophosphates target the nervous system by

inhibition of acetylcholinesterase, leading to over-

stimulation of muscarinic and nicotinic receptors.

Acute toxicity of organophosphates includes dia-

phoresis, salivation, lacrimation, urination, diarrhea,

emesis, miosis, bradycardia, and bronchospasm.

Exposure can also cause muscle fasciculations,

cramping, weakness, anxiety, confusion, ataxia,

tremors, seizures, and coma. In children, the most

common presentation is seizure and coma.60

■ Chronic exposure to pesticides can affect neuro-

logical and behavioral development in young

children, leading to altered reflexes, ADHD, and

deficient psychomotor and neurological develop-

ment.61 Higher levels of DDT in children are

associated with poorer performance on verbal

and memory scale scores.62

■ Glyphosate (N-(phosphonomethyl) glycine) is an

herbicide first used to control weeds in 1974.

Glyphosate use has increased rapidly in recent

decades, and in 2012, approximately 127,000

tons were applied to fields in the U.S. and

700,000 tons were applied worldwide.63 This

increase occurred particularly after a number of

glyphosate-resistant crops such as soybeans,

canola, cotton, and corn were genetically engi-

neered. The upward trend in glyphosate use will

likely contribute to increases in environmental

loadings and human exposures to this herbicide

and its metabolite aminomethylphosphonic acid

(AMPA).64
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■ Correlations between glyphosate use and a vari-

ety of human diseases including forms of cancer,

kidney damage, ADHD, autism, Alzheimer’s

and Parkinson’s disease have been described.65

Glyphosate was listed as a probable carcinogen

by a working group of 17 experts from 11 coun-

tries convened in 2015 by

the International Agency

for Research on Cancer

(IARC).66

■ The evidence linking

glyphosate exposure to

non-Hodgkin’s lymphoma

in humans is from mostly agricultural exposures,

mainly in the U.S. and Sweden published since

2001. The industrial farming application of

glyphosate is massive and includes vast areas of

the rich farmland of the U.S. (See Fig. 2). On

the basis of the IARC determination many

countries and communities currently restrict

glyphosate.66

Conclusion
Exposures to toxicants in soil can affect children’s

health. Many of the more common pollutants and their

effects are outlined to characterize the range of soil

contaminants and their impacts. There has been some

progress towards decreasing the

burden of soil contaminants

through efforts such as banning

the use of lead in automobile

gasoline; however, increased

efforts to limit exposure to a

wide range of soil toxicants are

needed. Exposures to toxicants

in air, water, and soil are a serious problem. This

worldwide issue deserves more attention in order to

limit the health risks to children. Fortunately, there

are many steps that can be taken to decrease the perva-

siveness of soil pollution and limit the impacts on

children’s health.

Increased efforts to limit toxicant exposure must be

widely adopted.

Fig. 2. Estimated use of glyphosates (Roundup) on agricultural land in pounds (0.45 kg) per square mile (2.6 square km).

Increased efforts to limit toxicant
exposure must be widely

adopted.
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Quantifying soil contamination
and identifying interventions

to limit health risks

Andrew D. Gailey, MS,a Aubrey E. Schachter, MS,b Sara P. Egendorf, MS,c and
Howard W. Mielke, PhDd,*

Numerous toxicants contaminate soil and negatively affect the
environments that children explore. Accurately measuring these
toxicants and characterizing the level of soil contamination may
be difficult and must include measurements of both the environ-
mental concentrations and the exposure responses of human pop-
ulations. This article reviews the current methods and technologies
available for quantifying soil contamination. Several intervention

strategies exist for limiting human exposure to contaminated soils
and the strengths and weaknesses of these methods are discussed.
Lastly, current policies on soil contamination and the importance
of protecting vulnerable populations by developing means to
improve health conditions for children are reviewed.

Curr Probl Pediatr Adolesc Health Care 2020; 50:100740

Introduction

N
umerous toxicants that contaminate the envi-

ronments that children explore may negatively

impact children’s immediate and/or long-term

health. Fortunately, much can be done to substantially

decrease these exposures and resulting health risks.

This paper describes the important technologies that

are used to further characterize the quantity of toxicant,

exposure risks, and important interventions for limiting

those risks. While remediation techniques are straight-

forward, and the ethical impetus seems clear, the poli-

cies surrounding environmental health and soil health

are more ambiguous. More advocacy must be done for

a healthier environment for children.

Quantification methods
With so many types of toxicants in the environment,

it is important to develop methods to measure both the

environmental concentrations and the exposure

responses of human populations. The impetus to mea-

sure contaminant quantities in the soil lags behind the

incentive to measure human exposure. Likewise, the

motivation to measure the human health outcomes of

exposure lags the economic stimulus for industrial

production resulting in pollution. Therefore, in order

to prevent detrimental health effects, a proactive,

rather than a reactive, approach must be adopted for

the protection of humans and the environment.

Toxicants in soil easily can go undetected because

they are frequently invisible. Although the presence

of paint chips, soil discolorations, strong odors, and a

failure of vegetation growth may indicate problems in

the soil, such issues may also be indicative of soil

quality issues (i.e., lack of drainage, compaction, lim-

ited organic matter, etc.) and not necessarily be indic-

ative of contamination. Many plants have effective

mechanisms to limit toxicant uptake and will grow to

maturity even when contaminants are present in soil.1

Sending soil samples to laboratories is the most reli-

able and effective way to assess contaminant concentra-

tions. Screening for metals with an x-ray fluorescence

(XRF) analyzer can provide rapid and accurate results.

Quantitative metals results also can be obtained by more

sophisticated methods involving soil digestion or extrac-

tion and mass-spectrometer analyses. Although test kits

are available for metals, mercury, organochlorine pesti-

cides, pentachlorophenol, and polycyclic aromatic

hydrocarbons (PAHs), many test kits available to con-

sumers can be unreliable. Additionally, certain testing

methods for organic pollutants may not be generally
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available or affordable for individual households. Most

agricultural extension offices provide support to individ-

uals for assessing the presence of a wide variety of soil

contaminants, but this resource may not be well known

to the general population.

One easy and inexpensive method for measuring

lead on interior floors involves wiping a measured sur-

face area of the floor. The current standard of lead dust

for interior floors is 107.5 mg/m2 (10 mg/ft2).2 The

Potentials Lead on Play Surfaces (PLOPS) method,

developed at Xavier and Tulane University in New

Orleans, Louisiana, measures surface lead loading and

the exposure potential of soil lead.3 Metal loading in

soil is measured by placing a wipe attached to a plastic

bag on the soil surface—similar to placing a hand on

the soil surface. Although quantities of metals in soils

typically are measured by content, surface loading is a

more relevant measure for a child at play because it

measures the quantity of metal directly obtainable

from the soil surface.4,5 The critical observation is

that the lead loading of outdoor surface of the soil that

meets the current U.S. Environmental Protection

Agency (EPA) residential soil standard (400 ppm) is

about 150 times higher than the current EPA standard

for lead dust on indoor floors. The association between

soil lead content and surface loading is consistent with

the observed lead exposure response between child-

ren’s blood and soil lead content disparities for a city.6

Fig. 1 provides an example of the association between

lead content and lead loading of the soil in New Orleans.

The lead loading was calculated from Mielke et al.7;

SL = �7.4 + 0.41 £ PLOPS 0.97 (SL = soil lead and

PLOPS = soil lead loading). This study showed that the

quantity of lead measured in soil containing 400 mg/g
has a soil loading of 16,200 mg/m2 (1500 mg/ft2) or

around 150 times more lead than is permissible in the

interior floor. The New Orleans soil lead survey visual-

izes the environmental signaling disparities and potential

children’s health issues derived from soil in New

Orleans. Children’s blood lead directly corresponds to

the soil lead and lead dust exposure in communities of

New Orleans.7

Fig. 1. The lead loading of the soil surface vs. the lead content of topsoil. Note the disparity in the amount of lead in the interior com-
munities of New Orleans compared with the outlying communities of the city. Children’s blood lead is closely associated with the
pattern of soil lead and lead dust loading of the soil surface. Credit: Creative Commons, Mielke HW, Gonzales C, Powell E and
Mielke PW. Evolving from Reactive to Proactive Medicine: Community Lead (Pb) and Clinical Disparities in Pre- and Post-Katrina
New Orleans Fig. 2, page 7487. Int. J. Environ. Res. Public Health 2014, 11, 7482�7491; https://doi.org/10.3390/
ijerph110707482.
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Margin of safety
A soil lead standard that adequately protects chil-

dren from exposure to soil lead can be developed

from these data.8,9 The current EPA standard for lead

in residential soil of 400 ppm does not include a mar-

gin of safety. The margin of safety applied to pharma-

ceutical products is at least a factor of 10. If the same

margin of safety were applied to soil lead, then a safer

standard with a margin of safety for soil lead would

be 40 ppm, not 400 ppm. In fact, in New Orleans, chil-

dren living in outlying communities where the com-

munity median soil lead is less than 40 ppm exhibit

blood lead levels that are less than 2 mg/dL.9 Fig. 1

demonstrates the fundamental issue. If the amount of

lead in soil is reduced, then attenuation of soil lead

effectively reduces children’s blood lead levels.8

Interventions
Many federal and state agencies accept that soil lead

contamination is a health problem. Acceptance is not

universal, however. For example, on September 27,

2018 the Commissioner of the New York City Depart-

ment of Health and Mental Hygiene stated at a City

Council hearing that soil is “not a significant source of

lead exposure for children in New York City.10 State-

ments such as this complicate the process of obtaining

measurements of soil lead contamination or engaging

in activities to address the urban soil problem by pre-

venting understanding about an invisible toxicant in

the environment.4

The U.S. EPA has outlined three main methods for

lowering human exposure to contaminated soils:

removing the soil and treating or disposing of it, treat-

ing the soil in place, or containing the soil in place to

limit exposure risk. These techniques, specific to lead

remediation, are described here, however, such techni-

ques can be applied to most contaminant types.

○ Dig and Haul

& The most common mechanism for decreasing

exposure risk is referred to as dig and haul. This

process is exactly as it sounds; contaminated soil

is excavated and transported to another area.

Although this is a rapid way to reduce the

Fig. 2. Example of soil intervention using geotextile and clean soil emplacement. In hours the soil lead on the surface of the children’s
play area decreased from ~700 ppm to ~5 ppm. The cost was about $100 per child for this activity. Photo credit: HW Mielke,
Department of Pharmacology, Tulane University School of Medicine.
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presence of in situ soil contaminants, the cost is

high ($388 per square meter, or $36 per square

foot). Shipping polluted soil to other locations

does not reduce overall contamination; it only

transfers it to another area. The process of dis-

tributing contaminated materials increases the

potential for resuspension and deposition of con-

taminated particles. For these reasons, attention

is being paid to “Green Remediation” in order to

improve on aspects of dig and haul projects that

are problematic.4 The U.S. EPA defines Green

Remediation as the practice of considering all

environmental effects of remedy implementation

and incorporating options to minimize environ-

mental footprints in cleanup actions.

○ Geotextile and clean soil emplacement

& A relatively uncomplicated and low-cost

approach was used in New Orleans, Louisiana to

conduct soil lead intervention projects. Fig. 2

shows that the intervention only requires two

components: geotextile and low contaminant

soil.5 Geotextile can be spread on the surface of

contaminated soil in sensitive areas such as

childcare play areas, parks, and elementary

schools for a cost as low as pennies per square

area. Bright orange geotextile is water perme-

able and provides a visible, protective layer

between the contaminated soil beneath and clean

soil above. Low contaminant alluvial soil to a

depth of at least 15 cm (6 inches) can be spread

on the surface of the geotextile.5 This method

costs $22 per square meter ($2�4 per square

foot). It is a cost-effective way of decreasing in

situ exposure risks that limits the additional risks

associated with dig and haul techniques. If the

cover is maintained, then burying the contami-

nated soil below the geotextile limits both current

and future risk. Mapping soil toxicants presents

an opportunity to educate future land users about

legacy contamination and the responsibility to

account for and proactively prevent exposure

from the site. Obtaining uncontaminated soil,

without disturbing other ecosystems may be a

limiting factor in this process. As such, research

is being conducted on manufacturing soil, or cre-

ating constructed Technosols, to meet this grow-

ing need.6,11

The photo (Fig. 2) of geotextile and low lead soil

emplacement underway at a childcare center

playground in New Orleans. Within hours the lead

content of the soil surface was transformed from

700 ppm to 5 ppm.

○ Phytoremediation

& Phytoremediation refers to a suite of approaches

involving the coordinated use of plants and their

associated microbes to reduce the toxic effects

of contaminants in the environment.4 The pro-

cess of phytoremediation has been shown to be a

cost-effective method for decreasing concentra-

tions of organic soil contaminants, with an esti-

mated cost of about $10�35 per ton of soil to be

decontaminated.12 Unfortunately, because of

extremely limited plant uptake, there is no

known plant that is capable of soil lead phytoex-

traction or hyperaccumulation.13 As a result, one

of the major limiting factors of phytoremedia-

tion is that this method can only reduce concen-

trations of certain pollutants. Phytostabilization,

however, the process through which plants stabi-

lize or sequester contaminants in soil or water, is

an effective way to reduce exposure to contami-

nated soil and maintain soil cover.

○ Urban gardening

& Urban gardening has proliferated over the past

few decades and provides a wide range of social

and ecological supports such as increased food

access and fresh produce intake,14�16 food jus-

tice and food sovereignty,17�19 a range of health

benefits,20�22 as well as increasing community

wellbeing.23�31 Ecological benefits include

reduced stormwater runoff,32 increased biodiver-

sity and habitat,33,34 and carbon dioxide seques-

tration.35,36 Gardeners growing in contaminated

urban soils frequently add amendments such as

compost, fertilizers, mulch, and a variety of

organic residuals which can change both the

overall concentration and bioavailability of con-

taminants in soil.37 These materials can dilute

the concentration of contaminants and may

change the form that elements such as Pb take,

by adsorption, complexation, or reduction.38,39

Amending with phosphorus, in particular, has

been shown to bind with Pb to form highly insol-

uble minerals.40 Phosphorus additions may

increase the availability of arsenic, however, and

must be added in accordance with detailed pro-

cedures, which may be difficult for home gar-

deners to employ.41 Phosphorus additions also
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can increase nutrient loading to aquatic systems,

leading to environmental issues such as eutro-

phication.42 There are many different methods

to test for Pb bioavailability, (or bioaccessiblity

when conducted in laboratories) and it is difficult

to compare results performed by different labs.43

& Growing plants in contaminated soils is essen-

tially a phytostabilization method, and this prac-

tice also can increase organic matter in the soil

from root exudates and decaying plant matter.

These additions can dilute the overall contami-

nant concentration, change potential bioavailabil-

ity, and can increase other biological activity and

bioturbation, potentially moving contaminants

down the soil profile.44�46 Most edible crops

employ a variety of mechanisms to limit Pb

uptake, and proper washing renders most crops

safe for consumption.47 Dust or surficial deposi-

tion of contaminated soil can be a source of expo-

sure so care should be taken to avoid growing

food in contaminated soils.48,49 Crop selection is

also important, and fruits tend to be less contami-

nated than leafy greens or root crops.50,51

& Other common urban horticultural and agricul-

tural practices include bringing in new soils,

which is aligned with the clean soil emplace-

ment intervention described above.

○ Other techniques

& Numerous other ideas for decreasing soil contam-

ination include soil venting, soil washing, solvent

extraction, and incineration. Unfortunately, these

techniques have demonstrated limited success

and are extremely resource intensive.

Although the above techniques focus on decreasing

contaminant levels before exposure, many children

already have been exposed, and there must be research

done on tools to decrease levels in these children. The

Cochrane Collaboration uses meta-analyses to evalu-

ate the effectiveness of medical interventions. The

Cochrane Collaboration found that typical interven-

tions for elevated blood lead consist of education and

household dust removal. While these interventions

may decrease the amount of contaminated soil in

homes52 they have not been shown to be effective at

reducing children’s blood lead levels.53 This is a

dilemma for medicine, because while the clinical

effects of pollutant exposure are known, an effective

intervention for reducing blood levels is lacking. To

date, no agreement has been reached about how to

lower blood lead levels once elevated, and more

research on this topic is needed.

Children’s blood is measured to test for lead expo-

sure. If the results are elevated (currently above 5 mg/
dL) then attempts are made to find the source of expo-

sure. This is secondary prevention and fails to meet

the goal of primary prevention of finding the source of

exposure in the first place. This is a critical ethics and

policy concern for healthcare and medicine.

Ethics and policy
The abilities to detect and remediate contaminated soil

have improved with time; however, our societal drive to

act lags behind. In 1925, Yale professor Yandell Hen-

derson warned about the ubiquitous use of lead, foresee-

ing that it would slowly grow to become an enormous

problem.54 He also suggested that “this is probably the

greatest single question in the field of public health that

has ever faced the American public. . .It is the question

whether scientific experts are to be consulted, and the

action of the Government guided by their advice; or

whether, on the contrary, commercial interests are to be

allowed to subordinate every other consideration to that

of profit.”54 Dr. Henderson raised an important concept

about the ethics behind protecting the health of the U.

S. population over the interests of corporations, as far

back as 1925. Although the public was warned about

the adverse effects of this insidious toxicant, no action

was taken to stop or prevent it. As has been clearly

shown through research, children face increased risks of

encountering contaminated soils and developing nega-

tive health effects from them, and therefore, end up

bearing much of the ensuing burden. As such, it is cru-

cial that action is taken not only to prevent future cata-

strophes from occurring, but also to identify the current

risks to children’s health and reduce these as much as

possible. Figure 3, Children must not be used as the test-

ing method for identifying lead in the environment.

Children are not able to protect themselves and it is vital

that adults, and especially health professionals advocate

for children and adolescents.

In 1964 the World Medical Association published

the Declaration of Helsinki policy statement.55 This

policy focuses on medical research with human sub-

jects and has been accepted by scientific communities

worldwide. Since its original publication, this state-

ment has been amended seven times to increase its

scope and clarify specific points. One such point of

emphasis is the importance of protecting the health of
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vulnerable populations, and particularly young chil-

dren.55 The policy defines vulnerable populations as

individuals who are “at increased likelihood of incur-

ring additional and greater harm” in the face of certain

dangers. Children are clearly vulnerable, and it is the

responsibility of society to keep them safe from the

soil toxicants that they cannot themselves avoid.

The ethical obligation to remediate and improve the

health of soil is clear. As such, there are numerous

policies currently enacted to influence the interven-

tions designed to decrease the health risks of certain

contaminants in soil.

Soil lead pollution provides an important case study

regarding the diverse regulatory guidance values for

preventing exposure to contaminated soils.56 Many

researchers throughout the world have evaluated soil

safety for children and continue to recognize harm at

ever lower amounts of exposure, but the policies have

failed to keep up with these discoveries. Fig. 4 shows

the variation in guidance values for soil lead that have

been promulgated by nations around the world.56 The

current U.S. guidelines for soil intervention were

established prior to the Center for Disease Control and

Prevention’s most recent understanding regarding

lead that “no known level of exposure is safe for child-

ren.”57 Currently, given that there is no known safe

level of lead exposure for children, and because it

lacks a margin of safety and fails to accept the strong

Fig. 4. Range of guidance values for soil lead promulgated by nations. The Russian soil lead standard is 32 mg/kg (ppm), Norway’s
standard is 60 mg/kg, and the US standard is 400 mg/kg. As shown in Fig. 1, lead loading on soil surfaces is extremely large com-
pared to lead loading allowed on interior floors. Figure credit: Jennings AA. Analysis of worldwide regulatory guidance values for
the most commonly regulated elemental surface soil contamination. A.A. Jennings / Journal of Environmental Management 118
(2013) 72�95 Fig. 1, p. 82. https://doi.org/10.1016/j.jenvman.2012.12.032.56

Fig. 3. Children’s blood being drawn to test for lead. Photo Credits: Center image, HW Mielke, Tulane University School of Medi-
cine; Right and left images, creative commons.
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link between soil lead and children’s health, the cur-

rent U.S. soil lead standard is out dated.58,59

Margin of safety
Primary prevention is fraught with examples of pol-

icy lag. For example, the addition of fluoride to com-

mon products consumed by people in the water supply,

dental products, salt, and many other sources was insti-

tuted in the 1950s to help prevent dental caries and

bone fractures.60 Some studies suggest, however, that

neurotoxicity is associated with too much fluoride. The

U.S. EPA initiated a study by the National Research

Council to reevaluate acceptable fluoride levels. In

2006 the committee found that the previous maximum

contaminant level goal (MCLG) should be lowered

because of increased risk of neurotoxicity, tooth enamel

fluorosis, and decreased ability to prevent bone frac-

tures at this MCLG.61 Despite these recommendations,

fluoride continues to be added to drinking water and

many commonly used products.

The U.S. EPA has published soil screening levels for

lead to identify areas that may need further attention,

if the land is on the National Priorities List for future

use as residential land.62 The U.S. EPA also has cre-

ated lead abatement guidelines that are intended to

guide owners of homes built before 1978, likely

painted with lead-based paint, through the interven-

tion process. A prominent piece of legislation, the

Toxic Substances Control Act (TSCA), was enacted

in the U.S. in 1976. The TSCA focused on addressing

the production, use, and disposal of chemicals such as

polychlorinated biphenyls (PCBs), asbestos, radon,

and lead-based paint. This legislation mainly

addressed future use and control of these substances

and did not offer much information on intervention

for already polluted areas.63 Although the Clean Air

Act of 1970 and the Clean Water Act of 1972 called

for specific changes and regulation in the U.S., no sig-

nificant legislation has been passed to extend the poli-

cies to contaminated soil. Moreover, the Stafford Act

protects the U.S. EPA from legacy issues, allowing

choice by agencies to follow or ignore governmental

requirements for remediation of known soil hazards.64

The U.S. must create more aggressive standards for

soil to prevent exposure and protect children’s health.

In contrast, other countries have moved forward

with plans of informational surveys and action. In

1981, Norway created a program as a result of their

Pollution Control Act that identified high-risk areas,

explained the impact of the contamination, and pro-

vided instruction for intervention.64 The Act provided

guidelines for soil intervention and standards for

cleanliness. The Norwegian Environment Agency

(NEA) has identified sites that are confirmed or possi-

bly contaminated based on proximity to landfills, facto-

ries, and other risk factors, and has been remediating

these sites for decades.65 Also, working with the Nor-

wegian Geological Survey, the NEA introduced

“Action Plans” in 2006 to reduce polluted soil in cer-

tain high-risk areas, focusing on child-care centers, ele-

mentary schools, and public parks. The NEA

coordinated and funded the projects and guidance to

prevent future contamination.53 Rolf Tore Ottesen and

Marianne Langedal shepherded the efforts in Norway

that resulted in a major advancement for improving

children’s environmental health in the country.

Fig. 5 illustrates the remarkable reductions in

blood lead of U.S. children. The reduction reflects

the effectiveness of primary prevention policies

focused on banning lead-based paint, removing

lead from food containers, and banning lead in

automotive gasoline. To continue progress in

reducing blood lead requires shifting focus to resid-

ual sources of lead, such as the reservoir of lead

dust in soil and lead dust potentially accessible on

homes coated with lead-based paint. Research in

New Orleans suggests that reducing lead in topsoil

is effective in reducing children’s blood lead.58

Efforts are needed on several fronts to continue

reducing children’s exposure to lead.

The World Health Organization has identified a list of

10 chemicals of major public health concern and has

recommended action to protect children and adults

from the dangers of these chemicals. The United

Nations has created Sustainable Development Goals

that aim to “substantially decrease the number of deaths

and illnesses from hazardous chemicals and air, water,

and soil pollution and contamination; and achieve the

environmentally sound management of chemicals and

all wastes throughout their life cycle, in accordance

with agreed international frameworks, and significantly

reduce their release to air, water and soil in order to

minimize their adverse impacts on human health and

the environment” by the year 2030.66 Although these

goals indicate a positive outlook worldwide, it is imper-

ative that all nations continue to work towards compli-

ance of these goals. One initiative toward improving

children’s health would be to decrease soil toxicants in

communities where people live.58
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Conclusions
Children are not simply small adults. They are not

equivalent to adults in development, physiology, or

maturity, and their health cannot be speculated on

simply by extrapolating from adults. They require

special consideration. The WHO defines vulnerabil-

ity as “the degree to which a population, individual,

or organization is unable to anticipate, cope with,

resist and recover from the impacts of disasters.”67

Children, along with several susceptible groups, are

vulnerable and it is the ethical responsibility of the

current generation to work to protect children from

the environmental health threats. Pediatric and ado-

lescent clinicians and the healthcare community can

work to prevent current and future children from

being exposed to environmental toxicants. Along

with other well-known environmental exposures

from air and water, exposure to soil toxicants is an

issue that must be addressed.
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